Meine Projektions-Kollektion:
Kartenprojektionen vergleichen
Canters W32 vs. Strebe-Mollweide
Canters W32 | Strebe-Mollweide | |
---|---|---|
Urheber | Frank Canters (2002) | Daniel »daan« Strebe (1992) |
Gruppe | Lentikulär | Lentikulär |
Eigenschaft | Flächentreu | Flächentreu |
Andere Namen |
|
— |
Anm.Anmerkungen | Bitte beachte Benennung der Canters-Entwürfe. Siehe auch meinen Blogpost über die Canters-Projektionen, Teil 1 (W01 - W14) und Teil 2 (W15 - W34). | Transformation der Mollweide-Projektion, mit Bonne φ1 = 16°N. Lies meinen Blogpost für nähere Informationen. |
Empfohlene Vergleiche | — | — |
1. Vergleich: Physische Karte – passend skaliert
2. Vergleich: Politische Karte – passend skaliert
Canters W32
Strebe-Mollweide
3. Vergleich: Umrisskarte – passend skaliert
4. Vergleich: Tissotsche Indikatrix, 30° – passend skaliert
Canters W32
Strebe-Mollweide
Canters W32 Tissotsche Indikatrix c Tobias Jung
Strebe-Mollweide Tissotsche Indikatrix c Tobias Jung
5. Vergleich: Physische Karte – auf gleiche Breite skaliert
Canters W32
Strebe-Mollweide
6. Vergleich: Politische Karte – auf gleiche Breite skaliert
Canters W32
Strebe-Mollweide
7. Vergleich: Umrisskarte – auf gleiche Breite skaliert
8. Vergleich: Tissotsche Indikatrix, 30° – auf gleiche Breite skaliert
Canters W32
Strebe-Mollweide
Canters W32 Tissotsche Indikatrix c Tobias Jung
Strebe-Mollweide Tissotsche Indikatrix c Tobias Jung
9. Vergleich: Tissotsche Indikatrix, 15° – passend skaliert
Canters W32
Strebe-Mollweide
Canters W32 Tissotsche Indikatrix c Tobias Jung
Strebe-Mollweide Tissotsche Indikatrix c Tobias Jung
10. Vergleich: Tissotsche Indikatrix, 15° – auf gleiche Breite skaliert
Canters W32
Strebe-Mollweide
Canters W32 Tissotsche Indikatrix c Tobias Jung
Strebe-Mollweide Tissotsche Indikatrix c Tobias Jung